首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles
Authors:ROBERT KOFLER  THOMAS FLATT  CHRISTIAN SCHLÖTTERER
Institution:Institut für Populationsgenetik, Vetmeduni Vienna, Veterin?rplatz 1, A‐1210 Vienna, Austria
Abstract:The genomic basis of adaptation to novel environments is a fundamental problem in evolutionary biology that has gained additional importance in the light of the recent global change discussion. Here, we combined laboratory natural selection (experimental evolution) in Drosophila melanogaster with genome‐wide next generation sequencing of DNA pools (Pool‐Seq) to identify alleles that are favourable in a novel laboratory environment and traced their trajectories during the adaptive process. Already after 15 generations, we identified a pronounced genomic response to selection, with almost 5000 single nucleotide polymorphisms (SNP; genome‐wide false discovery rates < 0.005%) deviating from neutral expectation. Importantly, the evolutionary trajectories of the selected alleles were heterogeneous, with the alleles falling into two distinct classes: (i) alleles that continuously rise in frequency; and (ii) alleles that at first increase rapidly but whose frequencies then reach a plateau. Our data thus suggest that the genomic response to selection can involve a large number of selected SNPs that show unexpectedly complex evolutionary trajectories, possibly due to nonadditive effects.
Keywords:adaptation  laboratory evolution  selective trajectories
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号