首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Exercise early in life in rats born small does not normalize reductions in skeletal muscle PGC-1α in adulthood
Authors:Laker Rhianna C  Wlodek Mary E  Wadley Glenn D  Gallo Linda A  Meikle Peter J  McConell Glenn K
Institution:Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia.
Abstract:We have previously shown that 4 wk of exercise training early in life normalizes the otherwise greatly reduced pancreatic β-cell mass in adult male rats born small. The aim of the current study was to determine whether a similar normalization in adulthood of reduced skeletal muscle mitochondrial biogenesis markers and alterations in skeletal muscle lipids of growth-restricted male rats occurs following early exercise training. Bilateral uterine vessel ligation performed on day 18 of gestation resulted in Restricted offspring born small (P < 0.05) compared with both sham-operated Controls and a sham-operated Reduced litter group. Offspring remained sedentary or underwent treadmill running from 5-9 (early exercise) or 20-24 (later exercise) wk of age. At 24 wk of age, Restricted and Reduced litter offspring had lower (P < 0.05) skeletal muscle peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein expression compared with Control offspring. Early exercise training had the expected effect of increasing skeletal muscle markers of mitochondrial biogenesis, but, at this early age (9 wk), there was no deficit in Restricted and Reduced litter skeletal muscle mitochondrial biogenesis. Unlike our previous observations in pancreatic β-cell mass, there was no "reprogramming" effect of early exercise on adult skeletal muscle such that PGC-1α was lower in adult Restricted and Reduced litter offspring irrespective of exercise training. Later exercise training increased mitochondrial biogenesis in all groups. In conclusion, although the response to exercise training remains intact, early exercise training in rats born small does not have a reprogramming effect to prevent deficits in skeletal muscle markers of mitochondrial biogenesis in adulthood.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号