首页 | 本学科首页   官方微博 | 高级检索  
     


Three-dimensional structure of phenylalanyl-transfer RNA synthetase from Thermus thermophilus HB8 at 0.6-nm resolution.
Authors:L Reshetnikova  M Chernaya  V Ankilova  O Lavrik  M Delarue  J C Thierry  D Moras  M Safro
Affiliation:Institute of Molecular Biology, Academy of Sciences of the USSR, Moscow.
Abstract:The three-dimensional structure of the heterodimeric alpha 2 beta 2 enzyme phenylalanyl-tRNA synthetase from Thermus thermophilus HB8 has been determined by X-ray crystallography, using the multiple-isomorphous-replacement method at 0.6 nm resolution. Trigonal crystals of space group P3(2)21 have cell dimensions a = b = 17.6 nm and c = 14.2 nm. Assuming one heterodimeric molecule/asymmetric unit, the ratio of unit cell volume/molecular mass was V = 0.00244 nm3/Da, which is in the middle of the range normally observed. However, after a rotation-function calculation and measurement of the density of the native crystals, we postulate the existence of only the alpha beta dimer in the asymmetric units. This implies 73% solvent content in the unit cell. Three heavy-atom derivatives [K2PtCl4, KAu(CN)2 and Hg(CH3COO)2] and the solvent-flattening procedure were used for electron-density-map calculations. This map confirmed our hypothesis and revealed a remarkably large space filled by solvent, with alpha beta dimer only in the asymmetric unit. The phenylalanyl-tRNA synthetase from T. thermophilus molecule has a 'quasi-linear' subunit organization. As can be concluded at this level of resolution, there is no contact between small alpha subunits in the functional heterodimer.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号