首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The precursor of secreted aspartic proteinase Sapp1p from Candida parapsilosis can be activated both autocatalytically and by a membrane-bound processing proteinase
Authors:Dostál Jirí  Dlouhá Helena  Malon Petr  Pichová Iva  Hrusková-Heidingsfeldová Olga
Institution:Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 6, CZ-166 10, Czech Republic.
Abstract:Opportunistic pathogens of the genus Candida produce secreted aspartic proteinases (Saps) that play an important role in virulence. Saps are synthesized as zymogens, but cell-free culture supernatants of Candida spp. contain only mature Saps. To study the zymogen conversion, the gene encoding a precursor of C. parapsilosis proteinase Sapp1p was cloned, expressed in E. coli and the product was purified. When placed in acidic conditions, the precursor was autocatalytically processed, yielding an active proteinase. The self-activation proceeded through an intermediate product and the resulting enzyme was one amino acid shorter than the authentic enzyme. This truncation did not cause changes in proteinase activity or secondary structure compared to the authentic Sapp1p. Accurate cleavage of the pro-mature junction, however, required a processing proteinase. A crude membrane fraction prepared from C. parapsilosis cells contained an enzyme with Kex2-like activity, which processed the Sapp1p precursor at the expected site. The pro-segment appeared to be indispensable for Sapp1p to attain an appropriate structure. When expressed without the pro-segment, the Sapp1p mature domain was not active and had a lower content of alpha-helical conformation, as measured by circular dichroism. A similar effect was observed when a His(6)-tag was linked to the C-terminus of Sapp1p or its precursor.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号