首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Growth, carboxylate exudates and nutrient dynamics in three herbaceous perennial plant species under low, moderate and high phosphorus supply
Authors:Lalith D B Suriyagoda  Hans Lambers  Michael Renton  Megan H Ryan
Institution:1. School of Plant Biology and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
2. Future Farm Industries Cooperative Research Centre, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
3. Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
4. CSIRO Ecosystem Sciences, Floreat, WA, 6014, Australia
Abstract:

Background and aims

Australian herbaceous native species have evolved in phosphorus (P) impoverished soils. Our objective was to explore shoot and root adaptations of two of these species with potential to be developed as pasture plants, at low, moderate and high P supply after 4 and 7?weeks of growth.

Methods

A glasshouse experiment examined the effect of 5, 20 and 80?mg?P?kg?1 air-dry soil on growth, rhizosphere carboxylate content, and mineral nutrition of two Australian native perennials, Kennedia nigricans (Fabaceae) and Ptilotus polystachyus (Amaranthaceae), and the exotic Medicago sativa (Fabaceae).

Key results

Leaf P concentrations at P80 were 6, 14 and 52?mg?P?g?1 leaf dry weight for M. sativa, K. nigricans and P. polystachyus, respectively. As soil P concentration increased, rhizosphere carboxylate content decreased for M. sativa, increased and then decreased for K. nigricans and was unchanged for P. polystachyus. For all species, the contribution of malic acid declined at the second harvest. For all species and P treatments, the amount of rhizosphere carboxylates per unit root length decreased as root length of a plant increased. Plant P content was determined more by P uptake rate per unit root length and time than by root length. Uptake of Mo for all species, and uptake of K, Mg and Mn for P. polystachyus, increased with soil P concentration. Uptake of Fe and S was higher when the content of carboxylates in the rhizosphere was higher.

Conclusion

Root physiological adaptations (i.e. rhizosphere carboxylate content and P-uptake rate) are more important than morphological adaptations (i.e. root length and diameter) to enhance the uptake of P and cations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号