首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Towards correlative super‐resolution fluorescence and electron cryo‐microscopy
Authors:Georg Wolff  Christoph Hagen  Kay Grünewald  Rainer Kaufmann
Institution:1. Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK;2. Department of Biochemistry, University of Oxford, Oxford, UK
Abstract:Correlative light and electron microscopy (CLEM) has become a powerful tool in life sciences. Particularly cryo‐CLEM, the combination of fluorescence cryo‐microscopy (cryo‐FM) permitting for non‐invasive specific multi‐colour labelling, with electron cryo‐microscopy (cryo‐EM) providing the undisturbed structural context at a resolution down to the Ångstrom range, has enabled a broad range of new biological applications. Imaging rare structures or events in crowded environments, such as inside a cell, requires specific fluorescence‐based information for guiding cryo‐EM data acquisition and/or to verify the identity of the structure of interest. Furthermore, cryo‐CLEM can provide information about the arrangement of specific proteins in the wider structural context of their native nano‐environment. However, a major obstacle of cryo‐CLEM currently hindering many biological applications is the large resolution gap between cryo‐FM (typically in the range of ~400 nm) and cryo‐EM (single nanometre to the Ångstrom range). Very recently, first proof of concept experiments demonstrated the feasibility of super‐resolution cryo‐FM imaging and the correlation with cryo‐EM. This opened the door towards super‐resolution cryo‐CLEM, and thus towards direct correlation of structural details from both imaging modalities.
Keywords:Cryo‐CLEM  Cryo‐imaging  Nanoscopy  SRM  TEM
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号