首页 | 本学科首页   官方微博 | 高级检索  
     


Mapping of the dimer interface of the Escherichia coli mannitol permease by cysteine cross-linking
Authors:van Montfort Bart A  Schuurman-Wolters Gea K  Wind Joyce  Broos Jaap  Robillard George T  Poolman Bert
Affiliation:Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Abstract:
A cysteine cross-linking approach was used to identify residues at the dimer interface of the Escherichia coli mannitol permease. This transport protein comprises two cytoplasmic domains and one membrane-embedded C domain per monomer, of which the latter provides the dimer contacts. A series of single-cysteine His-tagged C domains present in the native membrane were subjected to Cu(II)-(1,10-phenanthroline)(3)-catalyzed disulfide formation or cysteine cross-linking with dimaleimides of different length. The engineered cysteines were at the borders of the predicted membrane-spanning alpha-helices. Two residues were found to be located in close proximity of each other and capable of forming a disulfide, while four other locations formed cross-links with the longer dimaleimides. Solubilization of the membranes did only influence the cross-linking behavior at one position (Cys(73)). Mannitol binding only effected the cross-linking of a cysteine at the border of the third transmembrane helix (Cys(134)), indicating that substrate binding does not lead to large rearrangements in the helix packing or to dissociation of the dimer. Upon mannitol binding, the Cys(134) becomes more exposed but the residue is no longer capable of forming a stable disulfide in the dimeric IIC domain. In combination with the recently obtained projection structure of the IIC domain in two-dimensional crystals, a first proposal is made for alpha-helix packing in the mannitol permease.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号