首页 | 本学科首页   官方微博 | 高级检索  
     


Hyperosmotic relaxation lysis of chromaffin granules is caused by interactions between the granular membrane and intragranular vesicles
Authors:J Engel  E Donath  Y A Ermakov  H W Meyer  W Richter
Affiliation:Department of Biology, Humboldt University, Berlin, G.D.R.
Abstract:Bovine chromaffin granules undergo irreversible structural changes during osmotic shrinkage in hypertonic sucrose and salt solutions, such that, on reexposure to isoosmotic conditions they do not regain their original morphology, but undergo lysis ('hyperosmotic relaxation lysis'). Irreversible alterations of granules were induced by hypertonic incubations lasting for as little as 1 min. Fluorescence and EPR membrane labelling experiments showed that hypertonicity did not induce membrane loss for instance by inwardly or outwardly directed pinching off of membrane material. The mean sizes of chromaffin granules as a function of increasing and subsequently decreasing osmotic pressure were measured by photon correlation spectroscopy; there was no significant difference in sizes of hyperosmotically pretreated granules as compared with controls. Freeze-fracture electron micrographs showed the formation of 'twins' and 'triplets' under hypertonic conditions. They also revealed intragranular vesicles of 50-200 nm in diameter in both hypertonically and isotonically suspended granules. 'Twin' and 'triplet' granules were formed by the attachment of intragranular vesicles to the granule membranes. We suggest that hyperosmotic relaxation lysis is caused by the fact that this adhesion partly prevents the granule membrane from reexpanding, thus, leading to its rupture.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号