首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Insulin-like growth factor-I (IGF-I)-dependent activation of pp42/44 mitogen-activated protein kinase occurs independently of IGF-I receptor kinase activation and IRS-1 tyrosine phosphorylation.
Authors:L Yau  H Lukes  H McDiarmid  J Werner  P Zahradka
Institution:Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Canada.
Abstract:The proliferation and metabolism of H4IIE hepatoma cells is apparently mediated through the insulin receptor. These cells, however, also have high-affinity binding sites for insulin-like growth factor-I (IGF-I). Addition of insulin to H4IIE cells increased RNA synthesis, DNA synthesis and cell number. IGF-I, on the other hand, was ineffective at concentrations equivalent to the lowest effective insulin dose, although stimulation was observed with concentrations 100-fold higher. Similar results were obtained when glucose uptake was measured. Western blot analysis demonstrated that tyrosine phosphorylation patterns produced by insulin and IGF-I differed. In particular, phosphorylation of insulin receptor substrate-1 (IRS-1) was evident after treatment with insulin, but not after treatment with IGF-I. Correspondingly, insulin, but not IGF-I, stimulated receptor tyrosine kinase activity. In contrast with these results, both insulin and IGF-I induced mitogen-activated protein (MAP) kinase phosphorylation and activity at a concentration of 10 nM. The correlation between insulin-dependent and IGF-I-dependent MAP kinase activation was confirmed by Western blot analysis of phosphorylated MAP kinase kinase (MEK). These results suggest that phosphorylation of IRS-1 is essential for both cell proliferation and glucose metabolism, but is uncoupled from the MAP kinase cascade. Furthermore, stimulation of MEK and MAP kinase is independent of receptor tyrosine kinase activity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号