The biological transformation of P in soil |
| |
Authors: | K. R. Tate |
| |
Affiliation: | (1) N.Z. Soil Bureau, D.S.I.R., Lower Hutt, Zew Zealand |
| |
Abstract: | Summary Organic forms of soil phosphorus (Po) are an important source of available P for plants following mineralisation. The rates and pathways of P through soil organic matter are, however, poorly understood when compared to physco-chemical aspects of the P cycle. The essential role of soil microorganisms as a labile resercoir of P, confirmed experimentally and in modelling studies, has recently led to the development of methods for measuring thier P content. Incorporation in a new P fractionation scheme of these measurements with estimates of Pi and Po fractions that vary in the exten toftheir availability to plants has enabled the dynamics of short-term soil P transformations to be investigated in relation to long-term changes observed in the field.Different types of soil P compounds that minearlise at different rates can now be measured directly in extracts by31P-nuclear magnetic resonance. Orthophosphate diesters, including phospholipids and nucleic acids, are the most readily mineralised group of these compounds. However, mineralisation rates rather than the amounts of types of Po in soil ultimately control P availability to plants. These rates are influenced by a number of soil and site factors, as a sensitive new technique using [32P] RNA has recently shown.These recent developments reflect a more holistic approach to investigation of the soil P cycle than in the past, which should lead to improved fertilizer management practices.Introductory lecture |
| |
Keywords: | Immobilisation Microbial P Mineralisation Organic P P transformations Soil P cycle |
本文献已被 SpringerLink 等数据库收录! |
|