Putrescine distribution in Escherichia coli studied in vivo by C nuclear magnetic resonance |
| |
Authors: | Benjamí n Frydman, Rosalí a B. Frydman, Carlos de Los Santos, Daniel Alonso Garrido, Sara H. Goldemberg,Israel D. Algranati |
| |
Abstract: | In order to study the intracellular polyamine distribution in Escherichia coli, 13C-NMR spectra of [1,4-13C]putrescine were obtained after addition of the latter to intact bacteria. The 13C-enriched methylene signal underwent line broadening. When the cells were centrifuged after 90 min the cell-bound putrescine peak had a linewidth of 23 Hz, while the supernatant liquid showed an unbound putrescine signal with a linewidth smaller than 1 Hz. By using 13C-enriched internal standards it could be shown that the linewidening was not due to the heterogeneity of the medium or to an in vivo paramagnetic effect. Cell-bound putrescine was liberated by addition of trichloroacetic acid and was therefore non-covalently linked to macromolecular cell structures. Cell-bound [13C]putrescine could be displaced by addition of an excess of [12C]putrescine. When samples of membranes, soluble protein, DNA, tRNA and ribosomes from E. coli were incubated with [1,4-13C]putrescine, strong binding was detected only in the ribosomal and membrane fractions. The ribosome-putrescine complex showed properties similar to those determined with the intact cells. By measuring the nuclear Overhauser enhancements η, it was possible to estimate that only about 50% of the polyamine was linked to the macromolecules. Determination of the T1 values of free and ribosomal-bound putrescine allowed the calculation of a correlation time, τc = 4·10−7 s for the latter. T1 and τc value for the ribosome-putrescine complex were those expected for a motional regime of slowly tumbling molecules. |
| |
Keywords: | Putrescine distribution 13C-NMR (E. coli) |
本文献已被 ScienceDirect 等数据库收录! |
|