首页 | 本学科首页   官方微博 | 高级检索  
     


Reversion of hydroxyurea resistance, decline in ribonucleotide reductase activity, and loss of M2 gene amplification
Authors:G A McClarty  A K Chan  B K Choy  J A Wright
Abstract:
A key rate-limiting reaction in the synthesis of DNA is catalyzed by ribonucleotide reductase, the enzyme which reduces ribonucleotides to provide the deoxyribonucleotide precursors of DNA. The antitumor agent, hydroxyurea, is a specific inhibitor of this enzyme and has been used in the selection of drug resistant mammalian cell lines altered in ribonucleotide reductase activity. An unstable hydroxyurea resistant population of mammalian cells with elevated ribonucleotide reductase activity has been used to isolate three stable subclones with varying sensitivities to hydroxyurea cytotoxicity and levels of ribonucleotide reductase activities. These subclones have been analyzed at the molecular level with cDNA probes encoding the two nonidentical subunits of ribonucleotide reductase (M1 and M2). Although no significant differences in M1 mRNA levels or gene copy numbers were detected between the three cell lines, a strong correlation between cellular resistance, enzyme activity, M2 mRNA and M2 gene copies was observed. This is the first demonstration that reversion of hydroxyurea resistance is directly linked to a decrease in M2 mRNA levels and M2 gene copy number, and strongly supports the concept that M2 gene amplification is an important mechanism for achieving resistance to this antitumor agent through elevations in ribonucleotide reductase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号