首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparison of Structurally-Related Alkoxide, Amine, and Thiolate-Ligated M (M= Fe, Co) Complexes: the Influence of Thiolates on the Properties of Biologically Relevant Metal Complexes
Authors:Brines Lisa M  Villar-Acevedo Gloria  Kitagawa Terutaka  Swartz Rodney D  Lugo-Mas Priscilla  Kaminsky Werner  Benedict Jason B  Kovacs Julie A
Institution:Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, WA 98195-1700, United States
Abstract:Mechanistic pathways of metalloenzymes are controlled by the metal ion’s electronic and magnetic properties, which are tuned by the coordinated ligands. The functional advantage gained by incorporating cysteinates into the active site of non-heme iron enzymes such as superoxide reductase (SOR) is not entirely understood. Herein, we compare the structural and redox properties of a series of structurally-related thiolate, alkoxide, and amine-ligated Fe(II) complexes in order to determine how the thiolate influences properties critical to function. Thiolates are shown to reduce metal ion Lewis acidity relative to alkoxides and amines, and have a strong trans influence thereby helping to maintain an open coordination site. Comparison of the redox potentials of the structurally analogous compounds described herein shows that alkoxide ligands favor the higher-valent Fe3+ oxidation state, amine ligands favor the reduced Fe2+ oxidation state, and thiolates fall somewhere in between. These properties provide a functional advantage for substrate reducing enzymes in that they provide a site at the metal ion for substrate to bind, and a moderate potential that facilitates both substrate reduction and regeneration of the catalytically active reduced state. Redox potentials for structurally-related Co(II) complexes are shown to be cathodically-shifted relative to their Fe(II) analogues, making them ineffective reducing agents for substrates such as superoxide.
Keywords:Synthetic thiolate-ligated iron complexes  Non-heme iron  X-ray crystal structures  Redox properties  Bioinorganic  Metalloenzyme function
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号