首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Light pulses suppress responsiveness within the mouse photic entrainment pathway
Authors:Khammanivong A  Nelson D E
Institution:Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA.
Abstract:We have characterized a decrease in photic responsiveness of the mammalian circadian entrainment pathway caused by light stimulation. Phase delays of the running-wheel activity rhythm were used to quantify the photic responsiveness of the circadian system in mice (C57BL/6J). In an initial experiment, the authors measured the responsiveness to single "saturating" light pulses ("white" fluorescent light; approximately 1876 microW; 15 min). In two additional experiments, the authors measured responses to this stimulus at several time points following a saturating pulse at CT 14 or CT 16. Data from these experiments were analyzed in two manners. Experiment 2 was analyzed assuming that the phase of the circadian pacemaker was unchanged by an initial pulse, and Experiment 3 was analyzed assuming that the initial pulse induced an instantaneous phase delay. Results reveal a significant reduction in responsivity to light that persists for at least 2 h and possibly up to 4 h after the initial stimulus. Immediately after the stimulus, the responsiveness of the photic entrainment pathway was reduced to levels < or = 12% of normal. After 2 h, the responsiveness was < or = 42% of normal, and by 4 h, responsiveness had recovered to levels that were < or = 60% of normal (levels not statistically different from controls). By the following circadian cycle, responsiveness was more completely recovered, although the magnitude of some phase delays remained < or = 85% of normal. These major reductions in the magnitude of phase delays (and phase response curve amplitude) caused by saturating light pulses confound interpretations of two-pulse experiments designed to measure the rate of circadian phase delays. In addition, the time course for this reduced responsiveness may reflect the time course of cellular and molecular events that underlie light-induced resetting of the mammalian circadian pacemaker.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号