首页 | 本学科首页   官方微博 | 高级检索  
     


Glycopolymer charge density determines conformation in human ocular mucin gene products: an atomic force microscope study
Authors:Round Andrew N  Berry Monica  McMaster Terry J  Corfield Anthony P  Miles Mervyn J
Affiliation:H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK. andy.round@bristol.ac.uk
Abstract:
Atomic force microscopy (AFM) has been applied to the study of heterogeneity in the structure and function of individual biopolymers with complex structures such as glycoproteins, polysaccharides and nucleic acids. In this work we describe experiments which shed light on the heterogeneity of human ocular mucin gene products. By separating samples of native human ocular mucins on a caesium chloride density gradient, at least three populations consisting predominantly of products of the gene MUC5AC can be identified. Separation on the caesium chloride density gradient is governed by molecular architecture and charge density, and thus provides a route to the discrimination between different glycoforms within a glycoprotein sample. AFM images of these populations show that each is characterised by different conformational properties and polymer diameters, both of which can be attributed to differences in the degree and nature of glycosylation. These differences in glycosylation are likely to be the result of post-translational processing and may also have functional consequences. The AFM's ability to examine the composition of a predominantly single gene product population at the level of the single molecule allows the consequences of post-translational process heterogeneity to be examined at high resolution.
Keywords:Author Keywords: Mucin   Muc5ac   Glycosylation   Persistence length   Atomic force microscopy
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号