首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Targeted single molecule mutation detection with massively parallel sequencing
Authors:Mark T Gregory  Jessica A Bertout  Nolan G Ericson  Sean D Taylor  Rithun Mukherjee  Harlan S Robins  Charles W Drescher  Jason H Bielas
Institution:1.Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;2.Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;3.Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;4.Department of Pathology, University of Washington, Seattle, WA 98195, USA
Abstract:Next-generation sequencing (NGS) technologies have transformed genomic research and have the potential to revolutionize clinical medicine. However, the background error rates of sequencing instruments and limitations in targeted read coverage have precluded the detection of rare DNA sequence variants by NGS. Here we describe a method, termed CypherSeq, which combines double-stranded barcoding error correction and rolling circle amplification (RCA)-based target enrichment to vastly improve NGS-based rare variant detection. The CypherSeq methodology involves the ligation of sample DNA into circular vectors, which contain double-stranded barcodes for computational error correction and adapters for library preparation and sequencing. CypherSeq is capable of detecting rare mutations genome-wide as well as those within specific target genes via RCA-based enrichment. We demonstrate that CypherSeq is capable of correcting errors incurred during library preparation and sequencing to reproducibly detect mutations down to a frequency of 2.4 × 10−7 per base pair, and report the frequency and spectra of spontaneous and ethyl methanesulfonate-induced mutations across the Saccharomyces cerevisiae genome.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号