首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Auxin polar transport and flower formation in Arabidopsis thaliana transformed with indoleacetamide hydrolase (iaaH) gene
Authors:Oka M  Miyamoto K  Okada K  Ueda J
Institution:College of Integrated Arts and Sciences, Osaka Prefecture University, Japan.
Abstract:Involvement of auxin polar transport in flower formation of Arabidopsis thaliana was studied using a pinformed (pin) mutant (Rpin) transformed with the indoleacetamide hydrolase (iaaH) gene and the phenocopy of the pin mutant, which was induced by 9-hydroxyfluorene-9-carboxylic acid (HFCA). The application of indoleacetamide (IAM) did not change aberrant structure of the aerial part of Rpin (pin/pin), but extremely inhibited its root growth. Treatment with IAM increased the endogenous concentrations of free and conjugated IAA in Rpin normal (pin/+ or +/+) due to the expression of the iaaH gene, to 140% and 428% of those in non-treated plants, respectively, and those in Rpin to 378% and 120%, respectively. The activity of IAA polar transport in the inflorescence axis of Rpin remained low even in the presence of IAM, the activity being almost similar, to that in the pin mutant. The activity of IAA polar transport in the HFCA-induced phenocopy of the pin mutant was also extremely low, and it was not restored by the simultaneous application of IAA. Arabidopsis thaliana responded to HFCA applied from 7 to 11 d and from 25 to 29 d after germination in the wild-type plant (Enkheim ecotype) and the late flowering mutant (fb mutant), respectively. These results suggest that the construction of the system of auxin polar transport and its normal activities are essential for the differentiation and the formation of floral meristem in the early growth stage of Arabidopsis thaliana.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号