首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Application of the integrated lake-watershed acidification study model to watershed liming at woods Lake,New York
Authors:Veronica L Blette  Robert M Newton
Institution:1. Department of Geology, Smith College, Northampton, MA, 01063, USA
Abstract:Woods Lake, in the Adirondack Mountains of New York, was the site of the Experimental Watershed Liming Study (EWLS) in which base addition was investigated as a method for mitigation of lake acidity. In an effort to predict the duration of effects, the treatment was simulated using the Integrated Lake-Watershed Acidification Study (ILWAS) model. To simulate terrestrial liming, calcite was applied to treated subcatchments as a rapidly weathering mineral in the upper horizon. Soil solution and lake outlet chemistry showed a response to calcite addition within four months of the start of the simulation. Calcium concentrations, acid neutralizing capacities (ANC), and pH increased in the upper soil layer and aluminum concentrations decreased in the upper three soil layers (0–70 cm). The response of ANC was delayed in lower soil layers due to proton production associated with aluminum hydrolysis. Moreover, soil water pH in the third soil layer decreased in response to calcite treatment due to the displacement of hydrogen ions by calcium added to the exchange complex. Calcium concentrations, ANC and pH increased and aluminum concentrations decreased in the simulated lake outlet. The modeled effects of calcite treatment on the soil and lake outlet chemistry were not as great as field observations. This was, in part, attributed to the model representation of the watershed, which did not include streams, ponds, or wetlands located in the treated subcatchments. Calcite applied to these saturated areas in the field readily dissolved, supplying ANC to lake water. Additionally, incorporation of calcite into a thick organic layer in the model diminished the possibility of dissolution by contact with overland flow. Observed concentrations of calcium, ANC, and pH in the outlet decreased after high values in the two years after treatment. Although the model failed to match observed short-term data, it may simulate the long-term response as calcium is transported through the soil. A long-term simulation of the model suggests that effects of base treatment will persist for at least 50 years.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号