首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Protein kinase C inhibits type VI adenylyl cyclase by phosphorylating the regulatory N domain and two catalytic C1 and C2 domains
Authors:Lin Ting-Hui  Lai Hsing-Lin  Kao Yu-Ya  Sun Chung-Nan  Hwang Ming-Jing  Chern Yijuang
Institution:Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China.
Abstract:We previously showed that phosphorylation of Ser(10) of the N terminus domain of the type VI adenylyl cyclase (ACVI) partly mediated protein kinase C (PKC)-induced inhibition of ACVI. We now report that phosphorylation of the other two cytosolic domains (C1 and C2), which form the catalytic core complex of ACVI, also contributes to PKC-mediated inhibition. In vitro phosphorylation by PKC of the recombinant C1a and C2 domains, and of the synthetic peptides representing potential PKC phosphorylation sites, suggests that Ser(568) and Ser(674) of the C1 domain and Thr(931) of the C2 domain might act as substrates for PKC. We next created several full-length ACVI mutants in which one or more of the four likely PKC phosphorylation sites (Ser(10), Ser(568), Ser(674), and Thr(931)) were mutated to alanine. Simultaneous mutation of at least two of the three likely residues located in the N and C1 domains (Ser(10), Ser(568), and Ser(674)) was required to render ACVI variants completely insensitive to PKC treatment. In contrast, a single mutation of Thr(931) was sufficient to create a functional ACVI mutant that exhibited no detectable PKC-mediated inhibition, demonstrating the essentiality of Thr(931) to PKC-mediated regulation. Based on these results, we propose that the three cytosolic domains of ACVI might form a regulatory complex. Phosphorylation of this regulatory complex at different sites might induce a fine-tuning of the catalytic core complex and subsequently lead to alternation in the catalytic activity of ACVI.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号