首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The diversity of bioactive proteins in Australian snake venoms
Authors:Birrell Geoff W  Earl Stephen T H  Wallis Tristan P  Masci Paul P  de Jersey John  Gorman Jeffrey J  Lavin Martin F
Institution:The Queensland Institute of Medical Research, P. O. Royal Brisbane Hospital, Brisbane 4029, Australia.
Abstract:Australian elapid snakes are among the most venomous in the world. Their venoms contain multiple components that target blood hemostasis, neuromuscular signaling, and the cardiovascular system. We describe here a comprehensive approach to separation and identification of the venom proteins from 18 of these snake species, representing nine genera. The venom protein components were separated by two-dimensional PAGE and identified using mass spectrometry and de novo peptide sequencing. The venoms are complex mixtures showing up to 200 protein spots varying in size from <7 to over 150 kDa and in pI from 3 to >10. These include many proteins identified previously in Australian snake venoms, homologs identified in other snake species, and some novel proteins. In many cases multiple trains of spots were typically observed in the higher molecular mass range (>20 kDa) (indicative of post-translational modification). Venom proteins and their post-translational modifications were characterized using specific antibodies, phosphoprotein- and glycoprotein-specific stains, enzymatic digestion, lectin binding, and antivenom reactivity. In the lower molecular weight range, several proteins were identified, but the predominant species were phospholipase A2 and alpha-neurotoxins, both represented by different sequence variants. The higher molecular weight range contained proteases, nucleotidases, oxidases, and homologs of mammalian coagulation factors. This information together with the identification of several novel proteins (metalloproteinases, vespryns, phospholipase A2 inhibitors, protein-disulfide isomerase, 5'-nucleotidases, cysteine-rich secreted proteins, C-type lectins, and acetylcholinesterases) aids in understanding the lethal mechanisms of elapid snake venoms and represents a valuable resource for future development of novel human therapeutics.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号