Growth factor-binding sequence in human alpha2-macroglobulin targets the receptor-binding site in transforming growth factor-beta |
| |
Authors: | Arandjelovic Sanja Freed Tiffany A Gonias Steven L |
| |
Affiliation: | Department of Biochemistry and Molecular Genetics, Box 800214, Charlottesville, Virginia 22908, USA. |
| |
Abstract: | alpha(2)-Macroglobulin (alpha(2)M) binds transforming growth factor-beta1 (TGF-beta1) and TGF-beta2, forcing these growth factors into a state of latency. The mechanism by which this occurs remains unclear. In this paper, we demonstrate that peptides, derived from the structure of human alpha(2)M (amino acids 714-729), bind directly to TGF-beta1 and block the binding of TGF-beta1 to the type I and II TGF-beta receptors. The alpha(2)M-derived peptides are notable for hydrophobic tripeptide sequences (WIW or VVV) and acidic residues (Glu(714) and Asp(719) in the mature alpha(2)M subunit), which may function analogously to the structural elements that mediate TGF-beta-binding in the type II receptor. Mutating Glu(714) and Asp(719) in the alpha(2)M-peptide-GST fusion protein, FP3, which contains the putative growth factor-binding site, significantly decreased the binding affinity of FP3 for TGF-beta1. The alpha(2)M-derived peptides, which bind TGF-beta1, inhibited the interaction of TGF-beta1 with its receptors in fetal bovine heart endothelial cells. The same peptides also inhibited the activity of TGF-beta1 in endothelial cell proliferation assays. These results demonstrate that alpha(2)M-derived peptides target the receptor-binding sequence in TGF-beta. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|