首页 | 本学科首页   官方微博 | 高级检索  
     


Engineering cellulase mixtures by varying the mole fraction of Thermomonospora fusca E5 and E3, Trichoderma reesei CBHI, and Caldocellum saccharolyticum beta-glucosidase
Authors:Walker L P  Belair C D  Wilson D B  Irwin D C
Affiliation:Department of Agricultural and Biological Engineering, Riley-Robb Hall, Cornell University, Ithaca, New York 14853.
Abstract:
In this study, different mole fractions of pure Thermomonospora fusca E(5) and E(3), plus Trichoderma reesei CBHI were studied for reducing sugar production at 2 h, degree of synergism, and cellulose binding. In addition, the effects of introducing the Caldocellum saccharolyticum beta-glucosidase into this cellulase system were investigated. The cellulases used were purified to homogeneity. Avicel PH 102 (4% w/w solution in 0.05 sodium acetate pH 5.5 buffer) was the substrate. Reactions were run at 50 degrees C for 2 h using total cellulase concentrations of 8.3 or 12.2 muM. A bimixture of T. fusca E(3) and T. reesei CBHI was very effective in hydrolyzing microcrystalline cellulose (9.1% conversion). The addition of endoglucanase E(5) to the mixture only increased conversion to 9.8%. However, when both E(5) and beta-glucosidase were added, conversion increased to 14%. It was also observed that increasing total cellulase concentration beyond 8.3 muM did little to increase percent conversion of cellulose into glucose. The results of the binding studies indicate no competition for binding sites between the endo- and exocellulases. (c) 1993 John Wiley & Sons, Inc.
Keywords:Caldocellum saccharolyticum  cellulose  binding  β-glucosidase  hydrolysis  mole fraction  synergism  Thermomonospora fusca  Trichoderma reesei
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号