首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of calcium/calmodulin-dependent protein kinase II docking to N-methyl-D-aspartate receptors by calcium/calmodulin and alpha-actinin
Authors:Leonard A Soren  Bayer K-Ulrich  Merrill Michelle A  Lim Indra A  Shea Madeline A  Schulman Howard  Hell Johannes W
Affiliation:Department of Pharmacology, University of Wisconsin, Madison 53706-1532, USA.
Abstract:
Ca(2+) influx through the N-methyl-d-aspartate (NMDA)-type glutamate receptor leads to activation and postsynaptic accumulation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and ultimately to long term potentiation, which is thought to be the physiological correlate of learning and memory. The NMDA receptor also serves as a CaMKII docking site in dendritic spines with high affinity binding sites located on its NR1 and NR2B subunits. We demonstrate that high affinity binding of CaMKII to NR1 requires autophosphorylation of Thr(286). This autophosphorylation reduces the off rate to a level (t(12) = approximately 23 min) that is similar to that observed for dissociation of the T286D mutant CaMKII (t(12) = approximately 30 min) from spines after its glutamate-induced accumulation (Shen, K., Teruel, M. N., Connor, J. H., Shenolikar, S., and Meyer, T. (2000) Nat. Neurosci. 3, 881-886). CaMKII as well as the previously identified NR1 binding partners calmodulin and alpha-actinin bind to the short C-terminal portion of the C0 region of NR1. Like Ca(2+)/calmodulin, autophosphorylated CaMKII competes with alpha-actinin-2 for binding to NR1. We conclude that the NR1 C0 region is a key site for recruiting CaMKII to the postsynaptic site, where it may act in concert with calmodulin to modulate the stimulatory role of alpha-actinin interaction with the NMDA receptor.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号