Pivotal Role of Reduced Glutathione in Oxygen-induced Regulation of the Na+/K+ Pump in Mouse Erythrocyte Membranes |
| |
Authors: | A. Y.?Bogdanova mailto:annab@access.unizh.ch" title=" annab@access.unizh.ch" itemprop=" email" data-track=" click" data-track-action=" Email author" data-track-label=" " >Email author,O. O.?Ogunshola,C.?Bauer,M.?Gassmann |
| |
Affiliation: | (1) Institute of Veterinary Physiology and Institute of Physiology, University of Zürich, Zürich, Switzerland |
| |
Abstract: | This study addresses the mechanisms of oxygen-induced regulation of ion transport pathways in mouse erythrocyte, specifically focusing on the role of cellular redox state and ATP levels. Mouse erythrocytes possess Na+/K+ pump, K+-Cl– and Na+-K+-2Cl– cotransporters that have been shown to be potential targets of oxygen. The activity of neither cotransporter changed in response to hypoxia-reoxygenation. In contrast, the Na+/K+ pump responded to hypoxic treatment with reversible inhibition. Hypoxia-induced inhibition was abolished in Na+-loaded cells, revealing no effect of O2 on the maximal operation rate of the pump. Notably, the inhibitory effect of hypoxia was not followed by changes in cellular ATP levels. Hypoxic exposure did, however, lead to a rapid increase in cellular glutathione (GSH) levels. Decreasing GSH to normoxic levels under hypoxic conditions abolished hypoxia-induced inhibition of the pump. Furthermore, GSH added to the incubation medium was able to mimic hypoxia-induced inhibition. Taken together these data suggest a pivotal role of intracellular GSH in oxygen-induced modulation of the Na+/K+ pump activity. |
| |
Keywords: | Na+/K+ pump Mouse erythrocyte Hypoxia Glutathione |
本文献已被 PubMed SpringerLink 等数据库收录! |
|