首页 | 本学科首页   官方微博 | 高级检索  
     


Secretome analysis of Magnaporthe oryzae using in vitro systems
Authors:Jung Young-Ho  Jeong Seung-Hee  Kim So Hee  Singh Raksha  Lee Jae-eun  Cho Yoon-Seong  Agrawal Ganesh Kumar  Rakwal Randeep  Jwa Nam-Soo
Affiliation:Department of Molecular Biology, Sejong University, Gunja-dong, Seoul, South Korea.
Abstract:Magnaporthe oryzae is a devastating blast fungal pathogen of rice (Oryza sativa L.) that causes dramatic decreases in seed yield and quality. During the early stages of infection by this pathogen, the fungal spore senses the rice leaf surface, germinates, and penetrates the cell via an infectious structure known as an appressorium. During this process, M. oryzae secretes several proteins; however, these proteins are largely unknown mainly due to the lack of a suitable method for isolating secreted proteins during germination and appressoria formation. We examined the secretome of M. oryzae by mimicking the early stages of infection in vitro using a glass plate (GP), PVDF membrane, and liquid culture medium (LCM). Microscopic observation of M. oryzae growth revealed appressorium formation on the GP and PVDF membrane resembling natural M. oryzae-rice interactions; however, appresorium formation was not observed in the LCM. Secreted proteins were collected from the GP (3, 8, and 24 h), PVDF membrane (24 h), and LCM (48 h) and identified by two-dimensional gel electrophoresis (2DE) followed by tandem mass spectrometry. The GP, PVDF membrane, and LCM-derived 2D gels showed distinct protein patterns, indicating that they are complementary approaches. Collectively, 53 nonredundant proteins including previously known and novel secreted proteins were identified. Six biological functions were assigned to the proteins, with the predominant functional classes being cell wall modification, reactive oxygen species detoxification, lipid modification, metabolism, and protein modification. The in vitro system using GPs and PVDF membranes applied in this study to survey the M. oryzae secretome, can be used to further our understanding of the early interactions between M. oryzae and rice leaves.
Keywords:Blast  Fungus  Pathogen  Plant proteomics  Rice  Secretome
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号