首页 | 本学科首页   官方微博 | 高级检索  
     


During male pronuclei formation chromatin remodeling is uncoupled from nucleus decondensation
Authors:Monardes Antonia  Iribarren Claudio  Morin Violeta  Bustos Paula  Puchi Marcia  Imschenetzky María
Affiliation:Department of Biochemistry and Molecular Biology, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
Abstract:
Male pronucleus formation involves sperm nucleus decondensation and sperm chromatin remodeling. In sea urchins, male pronucleus decondensation was shown to be modulated by protein kinase C and a cdc2-like kinase sensitive to olomoucine in vitro assays. It was further demonstrated that olomoucine blocks SpH2B and SpH1 phosphorylation. These phosphorylations were postulated to participate in the initial steps of male chromatin remodeling during male pronucleus formation. At final steps of male chromatin remodeling, all sperm histones (SpH) disappear from male chromatin and are subsequently degraded by a cysteine protease. As a result of this remodeling, the SpH are replaced by maternal histone variants (CS). To define if sperm nucleus decondensation is coupled with sperm chromatin remodeling, we have followed the loss of SpH in zygotes treated with olomoucine. SpH degradation was followed with anti-SpH antibodies that had no cross-reactivity with CS histone variants. We found that olomoucine blocks SpH1 and SpH2B phosphorylation and inhibits male pronucleus decondensation in vivo. Interestingly, the normal schedule of SpH degradation remains unaltered in the presence of olomoucine. Taken together these results, it was concluded that male nucleus decondensation is uncoupled from the degradation of SpH associated to male chromatin remodeling. From these results, it also emerges that the phosphorylation of SpH2B and SpH1 is not required for the degradation of the SpH that is concurrent to male chromatin remodeling.
Keywords:fertilization  chromatin remodeling  sperm‐histones degradation  sperm‐histones phosphorylation  sea urchin
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号