首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Patterns of Gene Variation in Central and Marginal Populations of DROSOPHILA ROBUSTA
Authors:Satya Prakash
Abstract:The central and marginal populations of D. robusta differ greatly in the level of inversion polymorphism; the marginal populations are monomorphic or nearly so and the central populations are highly polymorphic. This paper presents the frequencies of alleles at forty gene loci in various populations of D. robusta, studied by electrophoresis of proteins and enzymes. Population samples were obtained from eight widely separated populations of D. robusta which included the central, the extreme marginal and the intervening populations between the center and the margins. We find that the proportion of polymorphic loci and average heterozygosity per individual is slightly higher in the marginal populations than the central populations. In D. robusta on an average, 39% of the loci are polymorphic and the average proportion of loci heterozygous per individual is 11%. A breakdown of loci in three categories, viz, hydrolytic enzymes and some other enzymes, larval proteins and glycolytic and Kreb's cycle enzymes, shows that in all populations the level of polymorphism is highest in the hydrolytic enzymes, intermediate in larval proteins and least in the glycolytic and Kreb's cycle enzymes. On the average, the proportion of loci heterozygous per individual for three groups of loci is: hydrolytic enzymes and others (.164), larval proteins (.115) and glycolytic and Kreb's cycle enzymes (.037). We also observe that in all populations the level of polymorphism on the X chromosome is far less than the expected 38%; in salivary gland cells the euchromatic length of the X chromosome is 38% of the entire genome. Lower levels of polymorphism for the X chromosome loci are explained due to low probability of balanced polymorphisms for the X-linked loci since the conditions for establishment of balanced polymorphism for X-linked loci are more restrictive than for the autosomal loci.-The polymorphic loci can be grouped according to pattern of allele frequencies in different populations as follows: (1) The allele frequencies are similar in all populations at the XDH, Pep-1 and Hex-1 loci. (2) The alleles at the Est-1, Est-2, Amy loci and the AP-4(1.0) and the LAP-1(.90) alleles show north south clinal change in frequency. (3) There is north south and east west differentiation at the Pt-5, Pt-8 and Pt-9 loci and the allele AP-4(.81). (4) Polymorphism at loci such as Fum, B.Ox, Hex-8, Pep-2 and Pep-3 are restricted to only one or two of the populations. (5) Allele frequencies at the MDH and ODH loci fluctuate between populations. (6) Allele frequencies at many polymorphic loci such as Est-1, Est-2, LAP-1, AP-4, Pt-5, Pt-8, Pt-9, Pt-16, MDH, Fum change clinally within a gene arrangement. The pattern of gene variation in D. robusta is very complex and cannot be easily explained due to migration of neutral alleles between once-isolated populations or to semi-isolation of neutral alleles. The observations of the pattern of allele variation in different populations, high levels of polymorphism in the marginal populations which have small population size and low levels of polymorphism of the X chromosome loci all support the argument in favor of balancing selection as the main mechanism for the maintenance of these polymorphisms. Environmental factors must play a role in the maintenance of a great deal of these polymorphisms, since we observe clinal allele frequency changes even within a given inversion type.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号