首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural rearrangements of the cerebral cortex in children and adolescents
Authors:T A Tsekhmistrenko  V A Vasilyeva  N S Shumeiko
Institution:1.Institute of Developmental Physiology,Russian Academy of Education,Moscow,Russia;2.Peoples’ Friendship University of Russia,Moscow,Russia
Abstract:The cortical formations of the brain involved in visual functions (the occipital and temporo-parieto- occipital areas, the oculomotor area of the prefrontal cortex), as well as the motor cortex in the representation zone of the arm and the medial region of the frontal cortex adjacent to the limbic lobe, were studied in post-mortem material. The thickness of the cortex and cortical layer III, the sizes of pyramidal neurons, the specific volumes of neurons and intracortical vessels were studied in subjects of both sexes, from birth to the age of 20 years, at yearly intervals (103 observations) using histological techniques, computer morphometric and stereological analysis. The thickness of the cortex of the cerebral hemispheres was observed to intensively increase from birth to the age of 3 years in the occipital, temporo-parieto-occipital and prefrontal cortical areas involved in visual recognition processes. The increase in thickness of the cerebral cortex continues until the age of 6 in the occipital cortex and in the oculomotor area, until the age of 7 years in the temporo-parietooccipital area and the medial prefrontal area, and until the age of 8–9 years in the motor cortex. The sizes of pyramidal neurons increase until the age of 6 years in the motor cortex, until the age of 8 years on the medial surface of the frontal lobe, and until the age of 9–10 years in the temporo-parieto-occipital area and in the dorsolateral area of the prefrontal cortex. The specific volume of neurons and blood vessels in the cortex of the cerebral hemispheres decreases and the volume of intracortical fibers increases throughout the ascending ontogeny, which is manifested most intensively in the prefrontal cortex.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号