首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expression, localization, and functional analysis of polychlorinated biphenyl degradation genes cbpABCD of Pseudomonas putida.
Authors:A A Khan and  S K Walia
Abstract:Genes of Pseudomonas putida strains that are capable of degrading polychlorinated biphenyls were cloned in the plasmid vector pUC19. The resultant hybrid plasmid, pAW6194, contained cbpABCD genes on a 9.0-kb DNA fragment that was necessary for the catabolism of polychlorinated biphenyls. These genes were further subcloned on an 8.0-kb HindIII fragment of pAW540. Degradation of 3-chlorobiphenyl, 2,4-dichlorobiphenyl, and 2,4,5-trichlorobiphenyl into a chloro derivative of benzoic acid was found in Escherichia coli harboring chimeric plasmid pAW540. Expression of cbpA (biphenyl dioxygenase, 6.2 U/mg of protein) and cbpC (3-phenylcatechol dioxygenase, 611.00 U/mg of protein) genes was also found in E. coli containing the hybrid plasmid pAW540. These enzyme activities were up to 10-fold higher than those found in P. putida OU83. These results led us to conclude that cbpABCD genes of P. putida OU83 were encoded on cloned DNA and expressed in E. coli. Whether the expression of cbpABCD genes of P. putida OU83 was driven by its own promoters located on the cloned DNA or by the lacZ promoter of pUC19 was examined by subcloning a 8.0-kb DNA fragment encoding the cbpABCD genes, in both orientations, in the HindIII site of the promoter probe vector pKK232-8. The resulting recombinant plasmids, pAW560 and pAW561, expressed cbpABCD genes and conferred chloramphenicol resistance only in E. coli harboring pAW560, indicating that the expression of chloramphenicol acetyltransferase is independent of cbpABCD gene expression.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号