首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thrombin hydrolysis of an N-terminal peptide from fibrinogen Lille: kinetic and NMR studies.
Authors:Z Zheng  R W Ashton  F Ni  H A Scheraga
Institution:Baker Laboratory of Chemistry, Cornell University, Ithaca, New York 14853-1301.
Abstract:Fibrinogen Lille, a congenital dysfibrinogenemia, has been reported to arise from a mutation from Asp to Asn at position 7 of the A alpha chain of human fibrinogen, thereby reducing the thrombin-catalyzed rate of hydrolysis of the Arg(16)-Gly(17) peptide bond of this chain. Synthetic peptides of relevant portions of the wild-type and mutant A alpha chains were prepared, and the thrombin-catalyzed rates of hydrolysis of their Arg(16)-Gly(17) peptide bonds were determined. In addition, transferred NOE measurements were made to deduce their conformations, when complexed to bovine thrombin. The kinetics data showed little difference in the hydrolysis rates between the wild-type and mutant peptides, and the NMR data indicate no difference in the bound conformation of these two peptides. Therefore, electrostatic (or salt-bridge) interactions between Asp(7) and thrombin do not influence the bound conformations of these peptides. Asp(7) may interact with a remote residue of fibrinogen, not present in these synthetic peptides, or there may be additional mutations beyond A alpha (1-20) which have not been detected in fibrinogen Lille. Alternatively, when thrombin binds to fibrinogen at its secondary binding site, its primary (active) site may display different reactivities toward wild-type fibrinogen and fibrinogen Lille.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号