首页 | 本学科首页   官方微博 | 高级检索  
     


Biogenesis of the avian erythroid membrane skeleton: receptor-mediated assembly and stabilization of ankyrin (goblin) and spectrin
Authors:R T Moon  E Lazarides
Abstract:Ankyrin is an extrinsic membrane protein in human erythrocytes that links the alpha beta-spectrin-based extrinsic membrane skeleton to the membrane by binding simultaneously to the beta-spectrin subunit and to the transmembrane anion transporter. To analyse the temporal and spatial regulation of assembly of this membrane skeleton, we investigated the kinetics of synthesis and assembly of ankyrin ( goblin ) with respect to those of spectrin in chicken embryo erythroid cells. Electrophoretic analysis of Triton X-100 soluble and cytoskeletal fractions show that at steady state both ankyrin and spectrin are detected exclusively in the cytoskeleton. In contrast, continuous labeling of erythroid cells with [35S]methionine, and immunoprecipitation of ankyrin and alpha- and beta-spectrin, reveals that newly synthesized ankyrin and spectrin are partitioned into both the cytoskeletal and Triton X-100 soluble fractions. The soluble pools of ankyrin and beta-spectrin reach a plateau of labeling within 1 h, whereas the soluble pool of alpha-spectrin is substantially larger and reaches a plateau more slowly, reflecting an approximately 3:1 ratio of synthesis of alpha- to beta-spectrin. Ankyrin and beta-spectrin enter the cytoskeletal fraction within 10 min of labeling, and the amount assembled into the cytoskeletal fraction exceeds the amount present in their respective soluble pools within 1 h of labeling. Although alpha-spectrin enters the cytoskeletal fraction with similar kinetics to beta-spectrin and ankyrin, and in amounts equimolar to beta-spectrin, the amount of cytoskeletal alpha-spectrin does not exceed the amount of soluble alpha-spectrin even after 3 h of labeling. Pulse-chase labeling experiments reveal that ankyrin and alpha- and beta-spectrin assembled into the cytoskeleton exhibit no detectable turnover, whereas the Triton X-100 soluble polypeptides are rapidly catabolized, suggesting that stable assembly of the three polypeptides is dependent upon their association with their respective membrane receptor(s). The existence in the detergent-soluble compartment of newly synthesized ankyrin and alpha- and beta-spectrin that are catabolized, rather than assembled, suggests that ankyrin and spectrin are synthesized in excess of available respective membrane binding sites, and that the assembly of these polypeptides, while rapid, is not tightly coupled to their synthesis. We hypothesize that the availability of the high affinity receptor(s) localized on the membrane mediates posttranslationally the extent of assembly of the three cytoskeletal proteins in the correct stoichiometry, their stability, and their spatial localization.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号