首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conformational similarities between one-chain and two-chain tissue plasminogen activator (t-PA): implications to the activation mechanism on one-chain t-PA.
Authors:V L Nienaber  S L Young  J J Birktoft  D L Higgins  L J Berliner
Institution:Department of Chemistry, Ohio State University, Columbus 43210.
Abstract:Tissue plasminogen activator (t-PA) is an exceptional serine protease, because unlike most other serine protease zymogens single-chain tissue plasminogen activator (sct-PA) possesses a substantial amount of proteolytic activity. The unusual reaction of sct-PA afforded the opportunity to directly compare the active site environment of sct-PA and two-chain tissue plasminogen activator (tct-PA) in solution through the application of a series of nitroxide spin labels and fluorophores. These labels, which have been previously shown to covalently label the catalytic serine of other serine proteases, inactivated both sct-PA and tct-PA. The labels can be divided into two classes: those which form tetrahedral complexes (sulfonates) and those which form trigonal complexes (anthranilates). Those which formed tetrahedral complexes were found to be insensitive to structural differences between sct-PA and tct-PA at the active site. In contrast, those which formed trigonal complexes could differentiate and monitor the sct-PA to tct-PA conversion by fluorescence spectroscopy. Models of the structure of sct-PA and tct-PA were constructed on the basis of the known X-ray structures of other serine protease zymogen and active enzyme forms. One of the nitroxide spin labels was modeled into the sct-PA and tct-PA structures in two possible orientations, both of which could be sensitive to structural differences between sct-PA and tct-PA. These models formed the structural rationale used to explain the results obtained with the "tetrahedral" and "trigonal" probes, as well as to offer a possible explanation for the unique reactivity of sct-PA.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号