首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of calcium ATPase by phencyclidine in rat brain
Authors:Pande  M.  Cameron  J.A.  Vig  P.J.S.  Ali  S.F.  Desaiah  D.
Affiliation:(1) Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA;(2) Department of Biology, Jackson State University, Jackson, MS, USA;(3) Section of Neurochemistry, Division of Neurotoxicology, N.C.T.R., Jefferson, AR, USA
Abstract:
Phencyclidine (PCP) is a potent psychotomimetic drug of abuse and has profound effect on the functioning of the central nervous system (CNS). Many of the CNS functions are known to be mediated by calcium (Ca2+). In the present study we have investigated the effects of PCP on Ca2+ ATPase activity in rat brain both in vitro and in vivo. For in vitro studies, synaptic membrane fractions prepared from normal rat brain were incubated with PCP at different concentrations (25-100 mgrM) before the addition of substrate. For n vivo studies, rats were treated with a single moderate dose of PCP (10 mg/kg, IP) and animals were sacrificed at 1,2, 6 and 12 h after treatment. Ca2+ ATPase activity in synaptic membrane fractions was assayed by estimation of inorganic phosphate. PCP inhibited the Ca2+ ATPase in vitro in a concentration dependent manner with significant effect at 50 and 100 mgrM. A significant time-dependent reduction of the Ca2+ ATPase activity was evident in vivo. As early as 2 h after the treatment of rats with PCP the ATPase activity was significantly reduced. The reduction of Ca2+ ATPase observed even at 12 h after treatment suggesting a prolonged presence of the drug in the brain tissue. Further, kinetic studies in vitro indicated PCP to be a competitive inhibitor of Ca2+ ATPase with respect to the substrate, ATP. The present findings indicate that PCP inhibits synaptic membrane Ca2+ ATPase thus altering cellular Ca2+ homeostasis in CNS which may partially explain the pharmacological effects of the drug and/or its neurotoxicity.
Keywords:calcium  ATPase  central nervous system  phencyclidine  inhibition  in vitro  in vivo
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号