首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Using an evapo-transpiration model (ETpN) to predict the risk and expression of symptoms of pine wilt disease (PWD) across Europe
Authors:Email author" target="_blank">H?R?GruffuddEmail author  T?A?R?Jenkins  H?F?Evans
Institution:1.Forest Research in Wales, Adeilad Edward Llwyd,Aberystwyth,UK
Abstract:The pine wood nematode (PWN) Bursaphelenchus xylophilus is the causal agent of pine wilt disease (PWD), a xylem restricting disease of pine trees. PWN, a native of North America where it very rarely kills native pine trees, has spread internationally killing host trees in China, Japan, Korea, Taiwan and Portugal, with isolated incursions into Spain. Based on the locations where tree mortality has been recorded, it appears that pine trees growing in hot, dry conditions are more susceptible to pine wilt disease. This paper describes the ETpN model, an evapo-transpiration model (previously developed by Forest Research), which has been modified to incorporate the presence of PWN inside a tree and which predicts the regions of Europe that are likely to succumb to PWD. ETpN acts independently of the vector beetle (Monochamus spp.), predicting the likelihood of PWD on the assumption that a tree in a particular region has already been infested by the pine wood nematode. Different regions across Europe are included to investigate and demonstrate how different climates affect PWD incidence significantly. Simplified, “lite” and latency models have been developed to allow a non-specialist user to determine respectively the risk of PWD at a particular location and the likelihood of delays (latency) in expression of wilt symptoms.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号