首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thermodynamic study of motor behaviour optimization
Authors:Patrick Cordier  Michel Mendès France  Philippe Bolon  Jean Pailhous
Institution:(1) Ecole Nationale de Ski et d'Alpinisme, Chamonix;(2) UER d'Informatique et Mathématique Pure, Université de Bordeaux I, Bordeaux, France;(3) Laboratoire d'Automatique et de Micro-Informatique Industrielle, Université de Savoie, Annecy;(4) Ecole Pratique des Hautes Etudes, Sciences de la Vie et de la Terre, Plasticité du Comportement de l'Homme Adulte, France
Abstract:Our work is aimed at studying the optimization of a complex motor behaviour from a global perspective. First, lsquofree climbingrsquo as a sport will be briefly introduced while emphasizing in particular its psychomotor aspect called lsquoroute findingrsquo. The basic question raised here is how does the optimization of a sensorimotoricity-environment system take place. The material under study is the free climber's trajectory, viewed as the lsquosignaturersquo of climbing behaviour (i.e., the spatial dimension). The concepts of learning, optimization, constraint, and degrees of freedom of a system will be discussed using the synergistic approach to the study of movement (Bernstein, 1967; Kelso, 1977). Measures of a trajectory's length and convex hull can be used to define an index whose equation resembles that of an entropy. This index is a measure of the trajectory's overall complexity. Some important concepts related to the thermodynamics of curves will also be discussed. The optimization process will be studied by examining the changes in entropy over time for a set of trajectories generated during the learning of a route (ten successive repetitions of the same climb). It will be shown that the entropy of the trajectories decreases as learning progresses, that each level of expertise has its own characteristic entropy curve, and that for the subjects tested, the mean entropy of skilled climbers is lower than that of average climbers. Basing our analysis on the concepts of degrees of freedom and constraint equations, an attempt is made to relate trajectory entropy to system entropy. Based on the postulate that trajectory entropy is equal to the difference in entropy between the unconstrained and constrained system, a model of motor optimization is proposed. This model is illustrated by an entropy graph reflecting a dynamic release process. In the light of our results, two opposing views will be examined: movement construction vs. movement emergence.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号