首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic diversity of maize kernel starch-synthesis genes with SNAPs.
Authors:Ji-Hyun Shin  Soon-Jae Kwon  Ju Kyong Lee  Hwang-Kee Min  Nam-Soo Kim
Institution:Division of Biotechnology, Kangwon National University, Chunchon 200-701, Korea.
Abstract:Measuring genetic diversity in populations of a crop species is very important for understanding the genetic structure of and subsequently improving the crop species by genetic manipulation. Single-nucleotide amplified polymorphisms (SNAPs) among and within maize populations of waxy, dent, and sweet corns at 25 single-nucleotide polymorphism (SNP) sites in 6 kernel starch-synthesis genes (sh2, bt2, su1, ae1, wx1, and sh1) were determined. Because of the intensive selection of some favorable alleles in starch-synthesis genes during the breeding process, and the resultant strong linkage disequilibrium (LD), the number of haplotypes in each population was far less than expected. Subsequent phenetic clustering analysis with the SNAPs indicated that the dent, waxy, and sweet corns formed distinct subclusters, except in a few incidences. LD was surveyed among SNAPs of intragenic, intergenic, and intrachromosomal SNPs in whole and subpopulations, which revealed that some SNAPs showed high LD with many other SNAPs, but some SNAPs showed low or no significant LD with others, depending on the subpopulation, indicating that these starch genes have undergone different selection in each subpopulation during the breeding process. Because the starch synthesis genes used in this study are important in maize breeding, the genetic diversity, LD, and accessions having rare SNAP alleles might be valuable in maize improvement programs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号