首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea
Authors:Park Gyungsoon  Xue Chaoyang  Zhao Xinhua  Kim Yangseon  Orbach Marc  Xu Jin-Rong
Institution:Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA.
Abstract:Rice blast fungus (Magnaporthe grisea) forms a highly specialized infection structure for plant penetration, the appressorium, the formation and growth of which are regulated by the Mst11-Mst7-Pmk1 mitogen-activated protein kinase cascade. We characterized the MST50 gene that directly interacts with both MST11 and MST7. Similar to the mst11 mutant, the mst50 mutant was defective in appressorium formation, sensitive to osmotic stresses, and nonpathogenic. Expressing a dominant active MST7 allele in mst50 complemented its defects in appressorium but not lesion formation. The sterile alpha-motif (SAM) domain of Mst50 was essential for its interaction with Mst11 and for appressorium formation. Although the SAM and Ras-association domain (RAD) of Mst50 were dispensable for its interaction with Mst7, deletion of RAD reduced appressorium formation and virulence on rice (Oryza sativa) seedlings. The interaction between Mst50 and Mst7 or Mst11 was detected by coimmunoprecipitation assays in developing appressoria. Mst50 also interacts with Ras1, Ras2, Cdc42, and Mgb1 in yeast two-hybrid assays. Expressing a dominant active RAS2 allele in the wild-type strain but not in mst50 stimulated abnormal appressorium formation. These results indicate that MST50 functions as an adaptor protein interacting with multiple upstream components and plays critical roles in activating the Pmk1 cascade for appressorium formation and plant infection in M. grisea.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号