Effect of clenbuterol on sarcoplasmic reticulum function in single skinned mammalian skeletal muscle fibers |
| |
Authors: | Bakker, Anthony J. Head, Stewart I. Wareham, Anthony C. Stephenson, D. George |
| |
Abstract: | We examined the effect of the2-agonist clenbuterol (50 µM)on depolarization-induced force responses and sarcoplasmic reticulum (SR) function in muscle fibers of the rat (Rattusnorvegicus; killed by halothane overdose) that had beenmechanically skinned, rendering the2-agonist pathway inoperable.Clenbuterol decreased the peak of depolarization-induced forceresponses in the extensor digitorum longus (EDL) and soleus fibers to77.2 ± 9.0 and 55.6 ± 5.4%, respectively, ofcontrols. The soleus fibers did not recover. Clenbuterol significantlyand reversibly reduced SR Ca2+loading in EDL and soleus fibers to 81.5 ± 2.8 and 78.7 ± 4.0%, respectively, of controls. Clenbuterol also producedan ~25% increase in passive leak ofCa2+ from the SR of the EDL andsoleus fibers. These results indicate that clenbuterol has directeffects on fast- and slow-twitch skeletal muscle, in the absence of the2-agonist pathway. Theincreased Ca2+ leak in the triadregion may lead to excitation-contraction coupling damage in the soleusfibers and could also contribute to the anabolic effect of clenbuterolin vivo. |
| |
Keywords: | |
|
| 点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息 |
|
点击此处可从《American journal of physiology. Cell physiology》下载全文 |
|