首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metabolic engineering and control analysis for production of aromatics: Role of transaldolase
Authors:Lu J L  Liao J C
Institution:Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122.
Abstract:Aromatic metabolites in Escherichia coli and other microorganisms are derived from two common precursors: phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P). During growth on glucose, the levels of both E4P and PEP are insufficient for high throughput of aromatics because of the low carbon flux through the pentose pathway and the use of PEP in the phosphotransferase system. It has been shown that transketolase and PEP synthase are effective in relieving this limitation and promoting high throughput of aromatics. To determine whether transaldolase, another E4P-producing enzyme, is also a limiting factor in directing carbon flux to the aromatic pathway, E. coli transaldolase gene (tal) was cloned and overexpressed in an aroB strain which excretes 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP), the first intermediate in the aromatic pathway. We found that overexpression of transaldolase did significantly increase the production of DAHP from glucose. This result further supports the contention that the supply of E4P is limiting when glucose is the carbon source. However, overexpression of transaldolase in strains which already overexpress transketolase did not show a further increase in production of aromatics. This result was attributed to the saturation of E4P supply when TktA was overexpressed. The flux control of DAHP production was discussed on the basis of Metabolic Control Analysis. (c) 1997 John Wiley & Sons, Inc.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号