首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Electron paramagnetic resonance signals from the S(3) state of the oxygen-evolving complex. A broadened radical signal induced by low-temperature near-infrared light illumination
Authors:Ioannidis N  Petrouleas V
Institution:Institute of Materials Science, NCSR "Democritos", 15310 Aghia Paraskevi, Attikis, Greece. nioannid@ims.demokritos.gr
Abstract:The tetranuclear manganese cluster responsible for the oxidation of water in photosystem II cycles through five redox states denoted S(i)() (i = 0, 1, 2, 3, 4). Progress has been made recently in the detection of weak low-field EPR absorptions in both the perpendicular and parallel modes, associated with the integer spin state S(3) Matsukawa, T., Mino, H., Yoneda, D., and Kawamori, A. (1999) Biochemistry 38, 4072-4077]. We confirm observation of these signals and have obtained them in high yield by illumination of photosystem II membranes, in which the non-heme iron was chemically preoxidized. It is shown that a split g = 4 signal accompanies the S(3) state signals. The signals diminish in the presence of ethanol and vanish in the presence of methanol. This effect is similar to that exerted by these alcohols to the high-spin component (g = 4.1) of the S(2) state and suggests that the latter spin configuration is the precursor of the S(3) state low-field signals. The S(3) state shows similar sensitivity to infrared illumination as has been observed previously in the S(2) state Boussac, A., Un, S., Horner, O., and Rutherford, A. W. (1998) Biochemistry 37, 4001-4007]. Illumination of the S(3) state with near-infrared light (700-900 nm), at temperatures around 50 K, results in the modification of the low-field signals and most notably to the appearance of a broad (DeltaH approximately 200 G) radical-type signal centered at g = 2. The signal is tentatively assigned to the interaction of the Mn cluster in a modified S(2) state with a radical.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号