首页 | 本学科首页   官方微博 | 高级检索  
     


Neural networks and linear programming for the satisfiability problem.
Authors:A Monfroglio
Affiliation:angelomonfroglio@mclink.it
Abstract:First a Linear Programming formulation is considered for the satisfiability problem, in particular for the satisfaction of a Conjunctive Normal Form in the Propositional Calculus and the Simplex algorithm for solving the optimization problem. The use of Recurrent Neural Networks is then described for choosing the best pivot positions and greatly improving the algorithm performance. The result of hard cases testing is reported and shows that the technique can be useful even if it requires a huge amount of size for the constraint array and Neural Network Data Input.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号