首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ANTIOXIDANT RESPONSES IN SCYTOSIPHON LOMENTARIA (PHAEOPHYCEAE) INHABITING COPPER‐ENRICHED COASTAL ENVIRONMENTS1
Authors:Loretto Contreras  Alejandra Moenne  Juan A Correa
Abstract:Scytosiphon lomentaria (Lingb.) Link. (Phaeophyceae) is one of the two dominant seaweeds in a coastal area of northern Chile affected by copper mine wastes, where the concentration of copper in water and algal tissues remains higher than in nonimpacted sites. Copper‐loaded plants develop oxidative stress, as demonstrated by the increased levels of reactive oxygen species and lipoperoxides. This stress was associated with 1) an enhanced activity of the antioxidant enzymes catalase, glutathione peroxidase, ascorbate peroxidase, monodehydroascorbate reductase, and dehydroascorbate reductase and 2) an inhibition of the glutathione reductase activity. Furthermore, stressed plants showed a decrease in glutathione and phenolic compounds levels and an increase in total ascorbate. Reciprocal transplants revealed that plants rapidly adjusted their antioxidant system in response to the conditions of the receiving site. In individuals transplanted from the copper‐enriched environment to the control site, normal levels of lipoperoxides and antioxidant compounds were restored in 48 h and antioxidant enzymes recovered their basal activities in 96 h. Individuals transplanted from the control site to the copper‐enriched area adjusted their antioxidant compounds and antioxidant enzymes within 48 h and 96 h, respectively, and reached the functional status of the local plants. We conclude that S. lomentaria inhabiting the copper‐enriched area buffered oxidative stress by a simultaneous involvement of antioxidant enzymes and water‐soluble antioxidant compounds. These antioxidant responses were rapid and reversible, suggesting that copper resistance in S. lomentaria is a constitutive trait and that copper enrichment of the area did not result in a locally adapted copper‐tolerant ecotype.
Keywords:adaptation  antioxidant metabolism  copper stress and resistance  physiological plasticity  Scytosiphon lomentaria
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号