首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetic equivalence of transmembrane pH and electrical potential differences in ATP synthesis
Authors:Soga Naoki  Kinosita Kazuhiko  Yoshida Masasuke  Suzuki Toshiharu
Institution:Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
Abstract:ATP synthase is the key player of Mitchell's chemiosmotic theory, converting the energy of transmembrane proton flow into the high energy bond between ADP and phosphate. The proton motive force that drives this reaction consists of two components, the pH difference (ΔpH) across the membrane and transmembrane electrical potential (Δψ). The two are considered thermodynamically equivalent, but kinetic equivalence in the actual ATP synthesis is not warranted, and previous experimental results vary. Here, we show that with the thermophilic Bacillus PS3 ATP synthase that lacks an inhibitory domain of the ε subunit, ΔpH imposed by acid-base transition and Δψ produced by valinomycin-mediated K(+) diffusion potential contribute equally to the rate of ATP synthesis within the experimental range examined (ΔpH -0.3 to 2.2, Δψ -30 to 140 mV, pH around the catalytic domain 8.0). Either ΔpH or Δψ alone can drive synthesis, even when the other slightly opposes. Δψ was estimated from the Nernst equation, which appeared valid down to 1 mm K(+) inside the proteoliposomes, due to careful removal of K(+) from the lipid.
Keywords:ATP Synthase  Biophysics  Chemical Biology  F1Fo-ATPase  Liposomes  Acid-Base Transition  Diffusion Potential  Proteoliposome  Proton Motive Force  Thermophilic FoF1
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号