首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Induced Variations in Brassinosteroid Genes Define Barley Height and Sturdiness,and Expand the Green Revolution Genetic Toolkit
Authors:Christoph Dockter  Damian Gruszka  Ilka Braumann  Arnis Druka  Ilze Druka  Jerome Franckowiak  Simon P Gough  Anna Janeczko  Marzena Kurowska  Joakim Lundqvist  Udda Lundqvist  Marek Marzec  Izabela Matyszczak  André H Müller  Jana Oklestkova  Burkhard Schulz  Shakhira Zakhrabekova  Mats Hansson
Abstract:Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.The introduction of dwarfing genes to increase culm sturdiness of cereal crops was crucial for the first Green Revolution (Hedden, 2003). The culms of tall cereal crops were not strong enough to support the heavy spikes of high-yielding cultivars, especially under high-nitrogen conditions. As a result, plants fell over, a process known as lodging. This caused losses in yield and grain-quality issues attributable to fungal infections, mycotoxin contamination, and preharvest germination (Rajkumara, 2008). Today, a second Green Revolution is on its way, to revolutionize the agricultural sector and to ensure food production for a growing world population. Concurrently, global climate change is expected to cause more frequent occurrences of extreme weather conditions, including thunderstorms with torrential rain and strong winds, thus promoting cereal culm breakage (Porter and Semenov, 2005; National Climate Assessment Development Advisory Committee, 2013). Accordingly, plant architectures that resist lodging remain a major crop-improvement goal and identification of genes that regulate culm length is required to enhance the genetic toolbox in order to facilitate efficient marker-assisted breeding. The mutations and the corresponding genes that enabled the Green Revolution in wheat (Triticum aestivum) and rice (Oryza sativa) have been identified (Hedden, 2003). They all relate to gibberellin metabolism and signal transduction. It is now known that other plant hormones such as brassinosteroids are also involved in the regulation of plant height. Knowledge of the molecular mechanisms underlying the effects of the two hormones on cell elongation and division has mainly come from studies in Arabidopsis (Arabidopsis thaliana; Bai et al., 2012). Mutant-based breeding strategies to fine-tune brassinosteroid metabolism and signaling pathways could improve lodging behavior in modern crops (Vriet et al., 2012) such as barley (Hordeum vulgare), which is the fourth most abundant cereal in both area and tonnage harvested (http://faostat.fao.org).A short-culm phenotype in crops is often accompanied by other phenotypic changes. Depending on the penetrance of such pleiotropic characters, but also the parental background and different scientific traditions and expertise, short-culmed barley mutants were historically divided into groups, such as brachytic (brh), breviaristatum (ari), dense spike (dsp), erectoides (ert), semibrachytic (uzu), semidwarf (sdw), or slender dwarf (sld; Franckowiak and Lundqvist, 2012). Subsequent mutant characterization was limited to intragroup screens and very few allelism tests between mutants from different groups have been reported (Franckowiak and Lundqvist, 2012). Although the total number of short-culm barley mutants exceeds 500 (Franckowiak and Lundqvist, 2012), very few have been characterized at the DNA level (Helliwell et al., 2001; Jia et al., 2009; Chandler and Harding, 2013; Houston et al., 2013). One of the first identified haplotypes was uzu barley (Chono et al., 2003). The Uzu1 gene encodes the brassinosteroid hormone receptor and is orthologous to the BRASSINOSTEROID-INSENSITIVE1 (BRI1) gene of Arabidopsis, a crucial promoter of plant growth (Li and Chory, 1997). The uzu1.a allele has been used in East Asia for over a century and is presently distributed in winter barley cultivars in Japan, the Korean peninsula, and China (Saisho et al., 2004). Its agronomic importance comes from the short and sturdy culm that provides lodging resistance, and an upright plant architecture that tolerates dense planting.Today, more than 50 different brassinosteroids have been identified in plants (Bajguz and Tretyn, 2003). Most are intermediates of the complex biosynthetic pathway (Shimada et al., 2001). Approximately nine genes code for the enzymes that participate in the biosynthetic pathway from episterol to brassinolide (Supplemental Fig. S1). Brassinosteroid deficiency is caused by down-regulation of these genes, but it can also be associated with brassinosteroid signaling. The first protein in the signaling network is the brassinosteroid receptor encoded by BRI1 (Li and Chory, 1997; Kim and Wang, 2010). In this work, we show how to visually identify brassinosteroid-mutant barley plants and we describe more than 20 relevant mutations in four genes of the brassinosteroid biosynthesis and signaling pathways that can be used in marker-assisted breeding strategies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号