首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chorismate synthase of Neurospora crassa: a flavoprotein
Authors:G R Welch  K W Cole  F H Gaertner
Abstract:Chorismate synthase is purified from Neurospora crassa. The final step is accomplished by preparative electrophoresis. Its purity is estimated at ≥90% on the basis of analytical polyacrylamide gel electrophoresis. The enzyme appears to be active in at least two multimeric states, with a subunit molecular weight of ~55,000. The purified enzyme preparation is absolutely dependent on the presence of a reducing system, which can readily be provided under aerobic conditions by NADPH plus FMN or under stringent anaerobic conditions by dithionite. The following evidence implicates a physiological role for FMN in N. crassa chorismate synthase activity: (a) a preferential stimulation of activity by NADPH and FMN over other pyridine and flavin nucleotides, respectively, in both impure and purified enzyme preparations; (b) an alteration of the Chromatographic pattern of the enzyme on diethylaminoethylcellulose by the addition of FMN to the elution buffer; (c) an apparent binding of FMN to the enzyme as exhibited by gel filtration in the presence of the substrate, 3-enolpyruvylshikimate 5-phosphate; (d) a requirement for preliminary incubation with FMN, in concert with the substrate, to eliminate a reaction lag (i.e., to activate the enzyme); (e) a substrate-dependent diaphorase activity exhibited by purified enzyme preparations in the presence of FMN and NADPH. The observed activation and alteration of Chromatographic behavior of chorismate synthase by FMN suggest that the flavin nucleotide influences the conformation of the enzyme. The ability to replace NADPH and FMN with dithionite suggests that FMN mediates the flow of electrons from a source of reducing power (NADPH) to some enzymic site important to the function of the enzyme. Hence, the diaphorase activity which is observed as intrinsic to chorismate synthase of N. crassa may be significant from the standpoint of catalysis or may have importance as a regulatory mechanism.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号