首页 | 本学科首页   官方微博 | 高级检索  
     


Wavelet thresholding with bayesian false discovery rate control
Authors:Tadesse Mahlet G  Ibrahim Joseph G  Vannucci Marina  Gentleman Robert
Affiliation:Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. mtadesse@cceb.upenn.edu
Abstract:The false discovery rate (FDR) procedure has become a popular method for handling multiplicity in high-dimensional data. The definition of FDR has a natural Bayesian interpretation; it is the expected proportion of null hypotheses mistakenly rejected given a measure of evidence for their truth. In this article, we propose controlling the positive FDR using a Bayesian approach where the rejection rule is based on the posterior probabilities of the null hypotheses. Correspondence between Bayesian and frequentist measures of evidence in hypothesis testing has been studied in several contexts. Here we extend the comparison to multiple testing with control of the FDR and illustrate the procedure with an application to wavelet thresholding. The problem consists of recovering signal from noisy measurements. This involves extracting wavelet coefficients that result from true signal and can be formulated as a multiple hypotheses-testing problem. We use simulated examples to compare the performance of our approach to the Benjamini and Hochberg (1995, Journal of the Royal Statistical Society, Series B57, 289-300) procedure. We also illustrate the method with nuclear magnetic resonance spectral data from human brain.
Keywords:False discovery rate    Multiple hypotheses testing    Posterior probability    p-value    Wavelet thresholding
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号