首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Potassium-selective amphotericin B channels are predominant in vesicles regardless of sidedness.
Authors:S C Hartsel  S K Benz  R P Peterson  B S Whyte
Institution:Department of Chemistry, University of Wisconsin-Eau Claire 54702.
Abstract:Amphotericin B (AmB) is a membrane-active antibiotic which has been shown to increase ion and small molecule permeability in a variety of model and biological membrane systems. A major mechanistic model, based on BLM systems, proposes that amphotericin forms barrellike pores with cholesterol which are cation selective when added to one side of the membrane and anion selective when added to both sides. We have tested this hypothesis on small and reverse-phase large unilamellar vesicles (SUV and REV) with and without cholesterol. The method used to measure K+, Cl-, and net ion currents is based on ion/H+ exchange detected by the entrapped pH probe pyranine. We find that AmB forms channels which have net selectivity for K+ over Cl- regardless of sidedness or sterol content in SUV. REV with 10% cholesterol also show net K+ selectivity with double-sided addition. Differences are noted between cholesterol- and non-sterol-containing vesicles consistent with at least two separate modes of action: (1) cholesterol-containing SUV form some larger diameter pores which allow the passage of larger ions especially when added to both sides; (2) SUV without sterol form pores which are still K+ over Cl- selective, but larger ions do not pass. The latter mode of action precludes a sterol/pore type of model but not necessarily a barrellike model consisting only of amphotericin molecules.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号