首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enhanced available methionine concentration associated with higher phaseolin levels in common bean seeds
Authors:P Gepts  F A Bliss
Institution:(1) Department of Horticulture, University of Wisconsin, 53706 Madison, WI, USA
Abstract:Summary The relationship between available methionine concentration and the levels of phaseolin — the major seed storage proteins of the common bean — was studied using three groups of genetic materials: First, the F2 progenies of interspecific crosses between P. vulgaris cultivars and aP. coccineus subsp. coccineus line (cv. lsquoMexican Red Runnerrsquo) having no detectable phaseolin; second, the F2 progenies and segregating F3 families of crosses between cultivated P. vulgaris lines and a Mexican wild bean accession (PI 325690-3) carrying a gene producing a reduction in phaseolin content; third, two inbred backcross populations: lsquoSanilacrsquoxlsquoBush Blue Lake 240rsquo (population 2) and lsquoSanilacrsquoxlsquo15R 148rsquo (population 6). Total seed N levels were determined by micro-Kjeldahl, phaseolin levels by rocket immunoelectrophoresis and available methionine levels by the Streptococcus zymogenes bioassay. Our results indicate that in all the genetic materials studied, with the exception of population 6, higher phaseolin levels lead to increased available methionine concentration. Although phaseolin has a low methionine concentration, it is actually a major source of available methionine in common bean seeds, because it represents a large part of total seed nitrogen and because limited differences exist between the methionine concentrations of the different protein fractions. This contrasts with the situation in cereals such as maize, barley and sorghum, where increased levels of the major limiting amino acid (lysine) can be achieved through a decrease in the amounts of the main seed storage protein fraction (prolamines). In population 6, no relationship was observed between available methionine and phaseolin content. Other factors, such as additional methionine-rich polypeptides or the presence of tannins, might obscure the positive relationship between phaseolin and available methionine content in population 6.
Keywords:Phaseolus vulgaris L    Streptococcus zymogenes bioassay  Rocket immunoelectrophoresis  Micro-Kjeldahl  Limiting essential amino acid
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号