Abstract: | In Gregarina blaberae a Mr = 47 000 and a Mr = 260–240 000 doublet polypeptides reacted in immunoblotting: i) with a polyclonal monospecific rabbit antibody to frog muscular actin, a monoclonal anti-actin antibody against chicken gizzard; and ii) with polyclonal and monoclonal antibodies to human erythrocyte β-spectrin, respectively. The Mr = 47 000 actin-like protein is associated with the ghost and a contractille cytoplasmic extract. The presence of an actin-like protein in Gregarina and Lecudina and its cellular distribution in the cortex indicated that the gliding movement might involve an actin-myosin system in contrast to previous studies. Immunofluorescence showed clear differences between the anterior part of Gregarina and Lecudina which illustrated the high cell polarity of these protozoa. The Mr = 260–240 000 doublet was detected in SDS-PAGE from G. blaberae trophozoite ghosts but not in the cytoplasmic extracts or in extracts from sexual stages, indicating that the presence of these spectrin-like proteins is stage-dependent. Visualization of the Mr = 260–240 000 by immunofluorescence showed clear species differences, with rings arranged perpendicular to the longitudinal narrow folds of G. blaberae, with longitudinal lines underlying the folds of L. pellucida and with lines separating the large folds of Selenidium pendula. The cellular distribution is consistent with a stabilizer function of the spectrin-like proteins in the scaffolding of the cortex of gregarines according to the high diversity of the cell-shape and the cell motility systems in gregarines. The presence of spectrin-like proteins in protozoa and particularly in parasites from primitive arthropods indicated that ancestral spectrin genes could the Mr = 260–240 000 form. |