首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inactivation of a subpopulation of human neutrophils by exposure to ultrahigh-molecular-weight polyethylene wear debris
Authors:Bernard Louis  Vaudaux Pierre  Huggler Elzbieta  Stern Richard  Fréhel Claude  Francois Patrice  Lew Daniel  Hoffmeyer Pierre
Institution:Service of Orthopaedic Surgery, Geneva University Hospital, Switzerland.
Abstract:Polymorphonuclear neutrophils, a first line of defence against invading microbial pathogens, may be attracted by inflammatory mediators triggered by ultrahigh-molecular-weight polyethylene (UHMWPE) wear particles released from orthopaedic prostheses. Phagocytosis of UHMWPE particles by neutrophils may indirectly compromise their phagocytic-bactericidal mechanisms, thus enhancing host susceptibility to microbial infections. In an in vitro assay, pre-exposure of purified human neutrophils to UHMWPE micrometre- and submicrometre-sized wear particles interfered with subsequent Staphylococcos aureus uptake in a heterogeneous way, as assessed by a dual label fluorescence microscopic assay that discriminated intracellular rhodamine-labelled UHMWPE particles from fluorescein isothiocyanate-labelled S. aureus. Indeed, a higher percentage (44%) of neutrophils having engulfed UHMWPE particles lost the ability to phagocytize S. aureus, compared with UHMWPE-free neutrophils (<3%). Pre-exposure of neutrophils to UHMWPE wear particles did not impair but rather stimulated their oxidative burst response in a chemoluminescence assay. The presence of UHMWPE wear particles did not lead to significant overall consumption of complement-mediated opsonic factors nor decreased surface membrane display of neutrophil complement receptors. In conclusion, engulfment of UHMWPE wear particles led to inactivation of S. aureus uptake in nearly half of the neutrophil population, which may potentially impair host clearance mechanisms against pyogenic infections.
Keywords:human polymorphonuclear neutrophils  ultrahigh-molecular-weight polyethylene wear particles  infections              Staphylococcus aureus            phagocytosis
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号